On the Effective Permeability of Mixed Matrix Membranes

Authors

  • Handan Tezel Department of Chemical and Biological Engineering University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
  • Hoda Azimi Department of Chemical and Biological Engineering University of Ottawa, Ottawa, Canada K1N 6N5
  • Jules Thibault Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada
Abstract:

Mixed matrix membranes (MMMs) are attracting significant interest for pervaporation and gas separation applications. To better comprehend the impact of filler particles within polymer matrices, the species permeation mass transport was theoretically studied by numerical simulation using finite differences. The Fick’s second law of diffusion was solved for a three-dimensional MMM to obtain the concentration profile within the membrane and consequently the steady-state permeation flux of the species. The effective permeability of MMMs was then calculated using the steady-state permeation flux of the permeants. The effects of various structural parameters such as the filler volume fraction, particle size, shape and orientation, the ratio of permeability coefficients in the dispersed and continuous phases (Pd/Pc), membrane thickness and particle sorption isotherms were investigated. Results revealed that the effective permeability of MMMs strongly depends on the permeability ratio of the dispersed phase to the continuous phase and the volume fraction of the filler material. Moreover, the shape and size of the particles had no influence on the effective permeability of MMMs for filler volume fractions that are less than 0.4. For numerical simulations performed with different particle sorption isotherms, results showed that the effective permeability of the membrane depends on the type and parameters of the isotherm as well as the feed concentration.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Comparative investigation on the correction factors of hydrogen permeability on CNTs-Mixed matrix membrane

This paper discusses different important gas permeation models such as “Maxwell”, “Bruggeman”, “Lewis-Neilson”, and “Pal” models to predict “Mixed Matrix Membranes” (MMMs) performance. The main parameter considered and discussed is the permeability of Hydrogen on Carbon Nanotubes (CNTs)-MMM. For evaluation of the theoretical models, experimental data of permeability for H2 were compa...

full text

Comparative investigation on the correction factors of hydrogen permeability on CNTs-Mixed matrix membrane

This paper discusses different important gas permeation models such as “Maxwell”, “Bruggeman”, “Lewis-Neilson”, and “Pal” models to predict “Mixed Matrix Membranes” (MMMs) performance. The main parameter considered and discussed is the permeability of Hydrogen on Carbon Nanotubes (CNTs)-MMM. For evaluation of the theoretical models, experimental data of permeability for H2 were compa...

full text

investigation of effective parameters on the rigidity of light composite diaphragms (psscb) by fem

در این رساله با معرفی سقف های psscb متشکل از ترکیب ورق های فولادی ذوزنقه ای و تخته های سیمانی الیافی به عنوان سقف های پیش ساخته (سازگار با سیستم سازه ای قاب های فولادی سبک) به بررسی پارامترهای موثر بر صلبیت سقف، پرداخته می شود. در تحقیق حاضر ابتدا به مدل سازی دو نمونه سقف آزمایش شده، به روش اجزاء محدود با استفاده از نرم افزار تحلیلی abaqus ver 6.10 پرداخته شده است. نمونه های ساخته شده تحت اعما...

Gas Separation Properties of Mixed Matrix Membranes based on Polyimide and Graphite Oxide

In this work, three different graphene-based materials, namely graphite oxide (GrO), thermally reduced graphite oxide (T-RGrO) and ascorbic acid multi-phase reduced graphene oxide (AMP-RGO), were synthesized and used to produce mixed matrix membranes (MMM) based on Matrimid®5218 for as separation. From the samples produced, a complete set of characterization was performed including XRD, FTIR, T...

full text

Polyurethane Mixed Matrix Membranes for Gas Separation: A Systematic Study on Effect of SiO2/TiO2 Nanoparticles

In this study, the effect of SiO2 and TiO2 nanoparticles on the gas separation performance of the polyurethane (PU) membranes has investigated. Polyurethanes were synthesized by bulk two step polym...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 3

pages  158- 166

publication date 2018-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023